Role of colony-stimulating activity in murine long-term bone marrow cultures: evidence for its production and consumption by the adherent cells.
نویسندگان
چکیده
The involvement of colony-stimulating activity (CSA) in murine long-term bone marrow cultures (LTBMC) was studied using bilayer agar cultures. The supernatants of LTBMC were removed, a layer of dense agar was spread over the cells adherent to the bottom of the flask, and fresh myeloid cells were plated as source of CFU-C in an upper agar layer. Large numbers of granulocytic and macrophagic colonies developed regularly when target cells were plated over adherent cells of nonrecharged and greater than 12 wk old LTBMC that were hematopoietically inactive (i.e., producing a low number of nonadherent cells). The removal of adherent cells from the myeloid cells used as source of CFU-C did not decrease the number of colonies. This suggests that adherent cells of LTBMC release CSA that is directly active on CFU-C. This CSA was no longer detectable over adherent layers of hematopoietically active LTBMC. A close inverse relationship was demonstrated between the number of nonadherent cells harvested before the assay and the level of CSA. No inhibitor for CSA was demonstrated in the supernatant of hematopoietically active cultures. Murine exogenous CSA incubated over the adherent layer host its activity within 24 hr, whereas in the same conditions human CSA retained its activity. These data demonstrate the production of CSA by the adherent layer of LTBMC and strongly suggest its specific in situ consumption by differentiating myeloid cells.
منابع مشابه
Granulocyte-macrophage colony-stimulating factor (GM-CSF) in human long-term bone marrow cultures: endogenous production in the adherent layer and effect of exogenous GM-CSF on granulomonopoiesis.
This study was designed to assess the presence of endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF) within adherent layers of human Dexter-type cultures and to investigate the effect on granulomonopoiesis of adding exogenous GM-CSF to the culture medium. The presence of GM-CSF was demonstrated using a bioassay, in which adherent layers from normal bone marrows gave rise to en...
متن کاملStromal growth factor production in irradiated lectin exposed long-term murine bone marrow cultures.
Hematopoietic regulatory factors produced by adherent (stromal) cells in long-term murine bone marrow cultures have been investigated. Using an in situ double layer agar overlay system, we demonstrated that exposure of the stromal cells to 1,100-rad irradiation increased their activities in stimulating colony formation of FDC-P1, an interleukin 3 (IL 3)-responsive cell line. The colony-stimulat...
متن کاملThe effect of lithium on growth factor production in long-term bone marrow cultures.
We have previously reported that lithium chloride (LiCl) stimulates the production of granulocyte-macrophage colony-forming cells (GM-CFC), pluripotent stem cells (CFU-S), and differentiated granulocytes, macrophages and megakaryocytes in murine Dexter marrow cultures and that this effect appears to be mediated indirectly by a radioresistant adherent marrow cell. In this study we have establish...
متن کاملPhorbol myristate acetate stimulates macrophage differentiation and replication and alters granulopoiesis and leukemogenesis in long-term bone marrow cultures.
The effects of the tumor-promoter phorbol myristate acetate (PMA) on normal hemopoiesis and Friend leukemia virus (FLV) granulocytic leukemogenesis in long-term bone marrow cultures were examined. FLV-anemia-inducing strain (FLV-A) infected, Rauscher R-MuLV clone M52R infected, or uninfected control NIH Swiss mouse marrow cultures were treated weekly with PMA or 4-O-methyl-PMA at 2.0 ng/ml or 2...
متن کاملRole of colony-stimulating factor in myelopoiesis in murine long-term bone marrow cultures.
Weekly medium change or midweek feeding of long-term bone marrow cultures (LTMBCs) results in a significant increase in total myeloid cell production. Proliferative myeloid cells peak 48 hours after feeding, and nonproliferative myeloid cells reach maximum levels at 72 hours. This increase in myelopoiesis is invariably preceded by a significant elevation in biologically and immunologically meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 59 4 شماره
صفحات -
تاریخ انتشار 1982